Architektur

86

java

Kubernetes

Der Schlussel zu Sicherheit und Effizienz fliir moderne Anwendungen

APl Gateways In

Kubernetes

In diesem Artikel wollen wir zeigen, warum API Gateways im Kubernetes-Umfeld
mehr sind als nur ein Einstiegspunkt — wir bieten einen Blick auf die Synergien

und Potenziale.

von Sven Bernhardt

Kubernetes, oder kurz K8s, ist heute der De-facto-In-
dustriestandard fur die Bereitstellung und Verwaltung
von containerisierten Anwendungen. Denn moderne
Applikationen werden meist Cloud-Native und im Stil
von Microservices-Architekturen entwickelt. Doch wie
lassen sich diese in autonome Services aufgeteilten An-
wendungen sicher und effizient fiir Zugriffe von aufler-
halb eines Kubernetes-Clusters bereitstellen? Ein API
Gateway kann hier Abhilfe schaffen und gleichzeitig
Entwicklungsteams entlasten sowie Transparenz schaf-
fen. Wie genau? Das sehen wir uns im Folgenden an.
Bevor wir zum eigentlichen Thema kommen, noch ein-
mal kurz der Hinweis, was ein API Gateway ist und wa-
rum es eine zentrale Architekturkomponente darstellt.
API Gateway ist ein Architekturpattern [1] und zielt auf
die Bereitstellung eines zentralen Einstiegspunkts fiir ex-
terne API-Nutzer ab. Grundlegend hat das erstmal we-
nig mit Technik zu tun. In der konkreten Auspriagung
tbernimmt es dhnliche Funktionen wie ein Reverse

Proxy. Es reicht Anfragen an die passenden Backend-
Services weiter und kiimmert sich um querschnittliche
Funktionen wie TLS-Terminierung, Authentifizierung,
Autorisierung, Load Balancing, Caching und Logging.

Fur Entwicklerteams bedeutet das mehr Produktivi-
tit und Zufriedenheit, weil wiederkehrende technische
Aspekte zentral abgedeckt werden und nicht mehr wie-
derholt implementiert werden miussen. Ein API Gateway
unterstiitzt zudem die Governance, indem es den Auf-
bau eines zentralen Policy-Managements fordert und
fiir Transparenz bei der API-Bereitstellung und -Ver-
wendung sorgt.

Kubernetes Service Management und die
Herausforderung mit Load Balancers

Um Applikationen von auflerhalb eines Kubernetes-
Clusters aufrufen zu konnen, wird ein Kubernetes
Service vom Typ Load Balancer benétigt. In Cloud-Um-
gebungen wird hierbei eine Load-Balancer-Instanz ge-
startet — wenn wir nicht aufpassen, wird im schlimmsten
Fall eine Load-Balancer-Instanz pro Applikation gestar-

entwickler.de

© PHOTOCREO Michal Bednarek/Shutterstock.com

tet. Das ist eine kostspielige und unpraktische Losung!
Hier setzt das Konzept eines zentralen Reverse Proxys
an, der in Kubernetes tiber einen Load Balancer Service
erreichbar gemacht wird und Routing, TLS-Terminie-
rung und Load Balancing iibernimmt.

Der Vorteil der in Abbildung 1 dargestellten Archi-
tektur ist, dass nur ein Load Balancer fiir den Proxy
benotigt wird. Die in Kubernetes bereitgestellten Appli-
kationen sind tiber den Proxy erreichbar.

Kubernetes Ingress und Gateway APl - Kubernetes-
eigene Konzepte zur Steuerung des Zugriffs

In Kubernetes wurde das Proxy-Konzept weiterent-
wickelt. Heute wird haufig ein Ingress Controller zur
Verwaltung externer Zugriffe auf Services genutzt. Ein
typischer Ingress Controller erlaubt Routing auf Basis
von Host- und Pfadinformationen und wird Kuberne-
tes-nativ iiber das Ingress-Objekt [2] konfiguriert (Lis-
ting 1).

Seit kurzem steht aufSerdem das Gateway API zur
Verfiigung [3], das iiber HTTP hinaus Protokolle wie
gRPC, TCP und UDP unterstiitzt und mehr Konfigurati-
onsoptionen bietet (Listing 2).

Beide Spezifikationen haben ihre Berechtigung und
werden parallel unterstiitzt — je nach Anwendungsfall
kann Ingress oder das Gateway API die passende Lo-
sung sein. Am Markt gingige Ingress Controller unter-
stiitzen neben Ingress in der Regel das Gateway API [4].

Abbildung 2 stellt dar, wie sich ein Ingress Controller
in Kubernetes integriert und wie entsprechende Regeln
tiber zum Beispiel Ingress- oder HTTPRoute-Definitio-
nen konfiguriert werden konnen.

Wir halten fest: Kubernetes-Applikationen konnen
via Ingress oder Gateway API einfach und effizient fiir
die externe Nutzung verfiigbar gemacht werden.

Listing 1

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: httpbin
namespace: demo
annotations:
ingress.kubernetes.io/ssl-redirect: "false"
spec:
ingressClassName: nginx
rules:
- http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: httpbin
port:
number: 80

entwickler.de

Kubernetes

API Gateway vs. Ingress Controller: ein Vergleich der
Funktionen
Dem aufmerksamen Leser wird es aufgefallen sein: Mit
API Gateway und Ingress Controller stehen unterschied-
liche Losungsbausteine zur Verfiigung, die grundlegend
dasselbe Problem adressieren.

Waihrend Ingress oder das Gateway API die grundle-
genden Funktionen wie Load Balancing, Routing und

Architektur

¢ Consumer Traffic

L:mml&alamcef

AN

=P
N

& App 3
_

9.9

J

-

Abb. 1: Reverse-Proxy-Konzept in Kubernetes

Consumer Traffic

Watch for relevant
Ingress / !
Gateway APT

A
definitions 3 3
_________ nﬁrgss
< Controller

| Store config
1in eted
Define Ingress HTTP !

& Routes, ete. .@
AP?

Developer

-0 C_J@

J

Abb. 2: Ingress Controller in Kubernetes

Listing 2

apiVersion: gateway.networking.k8s.io/ rules:

vlbetal - matches:

kind: HTTPRoute - path:

metadata: type: PathPrefix
name: httpbin value: /
namespace: demo backendRefs:

spec: - name: httpbin
parentRefs: port: 80

- name: nginx-gateway

java

87

Architektur

88

Kubernetes

Developer

Define Ingress/}

& Routes, ete.

8

Developer
Define APT G.ntm¢

confiy

.
Wateh for
relevant Ingress
Gl

/ Goteway APL
Controller
Store APL

definitions
.
@ Gateway config

I

op

i Comsumer Traffic

777}i

Database
(optional)

Store config

|
i
|
i
!
1in eted
'
'
1

App 2

e
—Q
\

Abb. 3: APl Gateway mit agnostischer Architektur in Kubernetes

SSL/TLS-Terminierung abdecken, bietet ein API Gate-
way umfassendere Fihigkeiten wie Authentifizierung,
Autorisierung, Rate Limiting, Caching und Observabi-
lity. Tabelle 1 zeigt die Unterschiede.

Wie dargestellt, ibernimmt ein API Gateway mehr als
nur das einfache Routing und kann ein zentraler Bau-
stein fiir ein umfassendes API-Management werden.

Wer bereits mit Ingress Controllern gearbeitet hat,
wird aus eigener Erfahrung wissen, dass die Grenzen
technisch verschwimmen. Denn teilwiese implementie-
ren Ingress Controller Funktionalititen, die in Tabelle 1
einem API Gateway zugeschrieben werden. Wichtig ist
daher, stets zu wissen, was das Ziel ist.

Die Qual der Wahl

Architekten und Entwickler miissen anhand von Anfor-
derungen und Use Cases entscheiden, welches Konzept
oder welche Technologie die bestehenden Herausfor-
derungen am besten 16st. Wie immer gibt es an dieser
Stelle keine pauschale Losung. Geht es ausschliefSlich
um die Erreichbarkeit von Kubernetes-Applikationen
aufSerhalb des Clusters und existieren keine weiterge-
henden Anforderungen an API-Management oder IT-
Sicherheit, wird in vielen Fillen ein Ingress Controller
ausreichen.

(o£:Ts -1 1] [14Y Ingress Controller API Gateway

Load Balancing Ja Ja
Routing Ja Ja
SSL/TLS-Terminierung Ja Ja
Authentifizierung Nein Ja
Autorisierung Nein Ja
Rate Limiting Nein Ja
Caching Nein Ja
Request-/Response- Nein Ja
Validierung

Observability Nein Ja

Tabelle 1: Gegenuberstellung der Capabilities von Ingress Controller und APl Gateway

java

Viele IT-Systemlandschaften sind heute aber hetero-
gen aufgestellt und basieren auf unterschiedlichen, auch
nicht containerbasierten Plattformen. Zudem verteilt
sich die Infrastruktur. Der Weg geht von reinen On-
Premises-Losungen hin zu hybriden und Multi-Cloud-
Architekturen. APIs existieren ebenfalls bereits, aber
haufig ohne jegliche Visibilitit und Management.

Um die Gefahr einzudimmen, dass sich die APIs zu
einem unkontrolliert wachsenden und undurchsichtigen
Dschungel entwickeln, sollten Architekten den Einsatz
eines API Gateway in Erwidgung ziehen. Und dieses API
Gateway sollte die notwendige Flexibilitat mitbringen,
um den Anforderungen einer verteilten, heterogenen
Landschaft gerecht zu werden.

API Gateways und Kubernetes
API Gateways sind heute bereits hiufig Bestandteil vieler
IT-Systemlandschaften. Viele Unternehmen verwenden
heute noch API Gateways, die auf dlteren Architekturen
basieren, wie etwa das Axway oder Layer 7 API Gate-
way. Sie stellen uns vor typische Herausforderungen,
wie wir sie von Legacy-Applikationen kennen. Es geht
also um Themen wie Skalierbarkeit, dynamische Kon-
figuration, Automatisierbarkeit etc. Zudem sind iltere
API Gateways meist ressourcenintensiv, was CPU- und
Speichernutzung angeht. Daher stofSen sie in hybriden
und Multicloud-Umgebungen haufig an Grenzen. Auch
sind sie in der Regel nicht konform mit Cloud-nativen
Prinzipien (wie den Twelve-Factor-App-Regeln [5]) und
lassen sich in hybriden oder Multi-Cloud-Szenarien
schlecht betreiben. Fiir den Betrieb in dynamischen Um-
gebungen wie Kubernetes sind diese also nicht geeignet.
Es kann klar gesagt werden: In Zeiten von Contai-
nern, Kubernetes und Multi-Cloud ist ein Umdenken
notig und auch zu beobachten. Cloud-native oder sogar
-agnostische API Gateways — etwa von Kong, Gravitee.
io oder KrakenD - bieten hier Flexibilitit und konnen
sogar direkt in Kubernetes betrieben werden. So ein
Gateway wird iiber ein Kubernetes Deployment be-
schrieben und lduft, wie in Abbildung 3 dargestellt, in
Form von Pods im Cluster. Die Erreichbarkeit erfolgt
iiber Ingress- oder HTTPRoute-Definitionen, wihrend
Routing- und Policy-Einstellungen iiber ein Administra-
tions-API gesteuert werden.

Also alles gut, oder?

Nun ja, bis auf einige Einschrinkungen ... Aus operati-
ver Sicht ist der in Abbildung 3 dargestellte architekto-
nische Aufbau nicht optimal. Das Gateway ist zwar auf
Cloud-Native-Prinzipien aufgebaut, allerdings bedeutet
das nicht, dass es auch konform mit den Kubernetes-Me-
chanismen und Konzepten ist und diese optimal ausnutzt:

® Betriebliche Komplexitdit: Die Konfiguration des API
Gateway muss irgendwo gespeichert werden. Ent-
weder wird sie als Datei im Docker-Image hinterlegt,
was aus Sicht der dynamischen Konfigurierbarkeit
problematisch ist. Alternativ kann auch eine Daten-

entwickler.de

bank im Kubernetes-Cluster oder extern bereitgestellt
werden. Insgesamt erhoht sich hierdurch die betrieb-
liche Komplexitit.

Skalierbarkeit: Die Herausforderungen im Bereich
der Konfiguration wirken sich auch negativ auf die
Skalierbarkeit aus. Vor allem, wenn eine Datenbank
verwendet wird, da diese entsprechend mitskaliert
werden muss.

Sicherbeit: Der dargestellte Aufbau birgt Sicherheits-
risiken. Da das Administrations-API aufSerhalb des
Clusters verfugbar ist, um das API Gateway konfigu-
rieren zu konnen, miissen sich Betriebsteams um eine
Absicherung kiilmmern. Weiterhin muss sichergestellt
werden, dass Kubernetes-Applikationen nicht am
API Gateway vorbei clusterextern verfiigbar gemacht
werden. Das kann z. B. durch die Einfithrung eines
Admission Controllers wie Kyverno [6] und die Defi-
nition entsprechender Regelwerke verhindert werden,
erhoht aber ebenfalls die betriebliche Komplexitit.

Kubernetes-native APl Gateways als zukunftsfahige
Losung

Aber wie konnen wir die zuvor beschriebenen Herausfor-
derungen l6sen? Die Antwort ist: durch die Verwendung
Kubernetes-nativer API Gateways! Solche Gateways in-
tegrieren sich optimal in das Kubernetes-Okosystem. Sie
benotigen kein separates Administrations-APL, da die
Konfiguration nativ iber Kubernetes erfolgt. Mit Hilfe
von Custom Resource Definitions (CRDs) konnen Poli-
cies und Services direkt in Kubernetes beschrieben wer-
den. Der gesamte Lifecycle des API Gateways wird mit
Kubernetes-Bordmitteln abgebildet — eine ideale Losung
fir GitOps-Ansitze, was auch der Entwicklereffizienz
zugutekommt, da das Kubernetes-Okosystem nicht ver-
lassen werden muss.

Weiterhin vereinfacht ein Kubernetes-natives API
Gateway auch die Handhabung im Betrieb, da Standard-
Kubernetes-Mechanismen genutzt werden. Werden
Kubernetes-Operatoren verwendet, konnen betriebliche
Abldufe nach der initialen Installation automatisiert und
somit effektiv unterstiitzt werden.

Beispiele fir Kubernetes-native API Gateways
(Abb. 4) sind neben anderen Kong, Gravitee.io oder
Apache APISIX. Was auffillt, ist: Softwarehersteller, die
Cloud-native oder -agnostische API Gateways anbieten,
bieten haufig auch Kubernetes-native Pendants an.

API Gateway in Kubernetes - sinnvoll oder nicht?
Abschlieflend stellt sich die Frage: Ist ein API Gateway
fiir Kubernetes-Applikationen notwendig? Die Antwort
lautet: ,Es kommt darauf an.“ Die wahre Stirke eines
API Gateway zeigt sich besonders dann, wenn das API-
Management strategisch angegangen wird und Sicher-
heit, Transparenz und Kontrolle gefragt sind.

Ein API Gateway kann Unternehmen helfen, die
zunehmende Komplexitit in heterogenen IT-System-
landschaften, die sich zunehmend in Richtung Cloud
beziehungsweise Multi-Cloud bewegen, zu bewiltigen.

entwickler.de

Kubernetes

Architektur

¢ Consumer Traffic

Loadbalancer

r l
Watch for

relevant Ingress E
Kubermetes-

/ Gateway APT
definitions

j S - - - - native APT
Watch for Grateway

relevant Goteway
A CRDs / \
@(@

| Store config

1in eted

. App 1

1

Define Ingress/HTTP !
Routes, ete.

L N
Define AP Gateway

Developer -

config

Abb. 4: Kubernetes-natives APl Gateway

Gerade in einer Zeit, in der Microservices das bevor-
zugte Stilmittel sind, wird es wichtiger, Uberblick iiber
vorhandene APIs und deren Nutzungsverhalten zu ha-
ben, Sicherheitsrichtlinien konsistent durchzusetzen und
Kommunikationsverldufe sichtbar zu machen. Kuber-
netes ist die elementare Plattform, um solche verteilten
Applikationsarchitekturen effizient zu betreiben und
weiterzuentwickeln. Durch den zunehmenden Einsatz
von KI und die Integration von Large Language Models
(LLMs) in Applikationen erhoht sich stetig die Anzahl
der zu managenden APIs. Das bedeutet, auch die Not-
wendigkeit fir ein konsistentes Management wachst
weiter.

Mein Pladoyer daher: Heute schon an morgen den-
ken: Ein API Gateway in Kubernetes konnte der erste
Schritt in Richtung eines umfassenden API-Manage-
ments sein — und langfristig die Basis fiir eine stabile und
zukunftsfihige IT-Infrastruktur!

Sven Bernhardt ist Chief Architect bei OPITZ CONSULTING mit
Fokus auf Modernisierung und Integration bestehender IT-Sys-
teme. Insbesondere am Herzen liegen ihm API-Management
und Microservices.

Links & Literatur

[1] https://microservices.io/ patterns/apigateway.html

[2] https://kubernetes.io/ docs/ concepts/services-networking/ingress/
[3] https://gateway-api.sigs.k8s.io

[4] https://gateway-api.sigs.k8s.io/implementations/

[5] https://12factor.net/de/

[6] https://kyverno.io

java

