
entwickler.dejavamagazin 2 | 2025

Architektur Kubernetes

86

©
 P

H
O

TO
C

R
EO

 M
ic

ha
l B

ed
na

re
k/

S
hu

tt
er

st
oc

k.
co

m

von Sven Bernhardt

Kubernetes, oder kurz K8s, ist heute der De-facto-In-
dustriestandard für die Bereitstellung und Verwaltung 
von containerisierten Anwendungen. Denn moderne 
Applikationen werden meist Cloud-Native und im Stil 
von Microservices-Architekturen entwickelt. Doch wie 
lassen sich diese in autonome Services aufgeteilten An-
wendungen sicher und effizient für Zugriffe von außer-
halb eines Kubernetes-Clusters bereitstellen? Ein API 
Gateway kann hier Abhilfe schaffen und gleichzeitig 
Entwicklungsteams entlasten sowie Transparenz schaf-
fen. Wie genau? Das sehen wir uns im Folgenden an.

Bevor wir zum eigentlichen Thema kommen, noch ein-
mal kurz der Hinweis, was ein API Gateway ist und wa-
rum es eine zentrale Architekturkomponente darstellt. 
API Gateway ist ein Architekturpattern [1] und zielt auf 
die Bereitstellung eines zentralen Einstiegspunkts für ex-
terne API-Nutzer ab. Grundlegend hat das erstmal we-
nig mit Technik zu tun. In der konkreten Ausprägung 
übernimmt es ähnliche Funktionen wie ein Reverse 

Proxy. Es reicht Anfragen an die passenden Backend-
Services weiter und kümmert sich um querschnittliche 
Funktionen wie TLS-Terminierung, Authentifizierung, 
Autorisierung, Load Balancing, Caching und Logging.

Für Entwicklerteams bedeutet das mehr Produktivi-
tät und Zufriedenheit, weil wiederkehrende technische 
Aspekte zentral abgedeckt werden und nicht mehr wie-
derholt implementiert werden müssen. Ein API Gateway 
unterstützt zudem die Governance, indem es den Auf-
bau eines zentralen Policy-Managements fördert und 
für Transparenz bei der API-Bereitstellung und -Ver-
wendung sorgt.

Kubernetes Service Management und die 
Herausforderung mit Load Balancers
Um Applikationen von außerhalb eines Kubernetes-
Clusters aufrufen zu können, wird ein Kubernetes 
Service vom Typ Load Balancer benötigt. In Cloud-Um-
gebungen wird hierbei eine Load-Balancer-Instanz ge-
startet – wenn wir nicht aufpassen, wird im schlimmsten 
Fall eine Load-Balancer-Instanz pro Applikation gestar-

Der Schlüssel zu Sicherheit und Effizienz für moderne Anwendungen 

API Gateways in 
Kubernetes 

In diesem Artikel wollen wir zeigen, warum API Gateways im Kubernetes-Umfeld 
mehr sind als nur ein Einstiegspunkt – wir bieten einen Blick auf die Synergien 
und Potenziale. 



entwickler.de javamagazin  2 | 2025

ArchitekturKubernetes

87

tet. Das ist eine kostspielige und unpraktische Lösung! 
Hier setzt das Konzept eines zentralen Reverse Proxys 
an, der in Kubernetes über einen Load Balancer Service 
erreichbar gemacht wird und Routing, TLS-Terminie-
rung und Load Balancing übernimmt. 

Der Vorteil der in Abbildung 1 dargestellten Archi-
tektur ist, dass nur ein Load Balancer für den Proxy 
benötigt wird. Die in Kubernetes bereitgestellten Appli-
kationen sind über den Proxy erreichbar.

Kubernetes Ingress und Gateway API – Kubernetes-
eigene Konzepte zur Steuerung des Zugriffs
In Kubernetes wurde das Proxy-Konzept weiterent-
wickelt. Heute wird häufig ein Ingress Controller zur 
Verwaltung externer Zugriffe auf Services genutzt. Ein 
typischer Ingress Controller erlaubt Routing auf Basis 
von Host- und Pfadinformationen und wird Kuberne-
tes-nativ über das Ingress-Objekt [2] konfiguriert (Lis-
ting 1).

Seit kurzem steht außerdem das Gateway API zur 
Verfügung [3], das über HTTP hinaus Protokolle wie 
gRPC, TCP und UDP unterstützt und mehr Konfigurati-
onsoptionen bietet (Listing 2).

Beide Spezifikationen haben ihre Berechtigung und 
werden parallel unterstützt – je nach Anwendungsfall 
kann Ingress oder das Gateway API die passende Lö-
sung sein. Am Markt gängige Ingress Controller unter-
stützen neben Ingress in der Regel das Gateway API [4].
Abbildung 2 stellt dar, wie sich ein Ingress Controller 

in Kubernetes integriert und wie entsprechende Regeln 
über zum Beispiel Ingress- oder HTTPRoute-Definitio-
nen konfiguriert werden können.

Wir halten fest: Kubernetes-Applikationen können 
via Ingress oder Gateway API einfach und effizient für 
die externe Nutzung verfügbar gemacht werden.

API Gateway vs. Ingress Controller: ein Vergleich der 
Funktionen
Dem aufmerksamen Leser wird es aufgefallen sein: Mit 
API Gateway und Ingress Controller stehen unterschied-
liche Lösungsbausteine zur Verfügung, die grundlegend 
dasselbe Problem adressieren.

Während Ingress oder das Gateway API die grundle-
genden Funktionen wie Load Balancing, Routing und 

Abb. 1: Reverse-Proxy-Konzept in Kubernetes

Abb. 2: Ingress Controller in Kubernetes

Listing 1

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
  name: httpbin
  namespace: demo
  annotations:
    ingress.kubernetes.io/ssl-redirect: "false"
spec:
  ingressClassName: nginx
  rules:
  - http:
      paths:
      - path: /
        pathType: Prefix
        backend:
          service:
            name: httpbin
            port:
              number: 80

Listing 2

apiVersion: gateway.networking.k8s.io/
v1beta1
kind: HTTPRoute
metadata:
  name: httpbin
  namespace: demo
spec:
  parentRefs:
  - name: nginx-gateway

  rules:
  - matches:
    - path:
        type: PathPrefix
        value: /
    backendRefs:
    - name: httpbin
      port: 80



entwickler.dejavamagazin 2 | 2025

Architektur Kubernetes

88

SSL/TLS-Terminierung abdecken, bietet ein API Gate-
way umfassendere Fähigkeiten wie Authentifizierung, 
Autorisierung, Rate Limiting, Caching und Observabi-
lity. Tabelle 1 zeigt die Unterschiede.

Wie dargestellt, übernimmt ein API Gateway mehr als 
nur das einfache Routing und kann ein zentraler Bau-
stein für ein umfassendes API-Management werden.

Wer bereits mit Ingress Controllern gearbeitet hat, 
wird aus eigener Erfahrung wissen, dass die Grenzen 
technisch verschwimmen. Denn teilwiese implementie-
ren Ingress Controller Funktionalitäten, die in Tabelle 1 
einem API Gateway zugeschrieben werden. Wichtig ist 
daher, stets zu wissen, was das Ziel ist.

Die Qual der Wahl
Architekten und Entwickler müssen anhand von Anfor-
derungen und Use Cases entscheiden, welches Konzept 
oder welche Technologie die bestehenden Herausfor-
derungen am besten löst. Wie immer gibt es an dieser 
Stelle keine pauschale Lösung. Geht es ausschließlich 
um die Erreichbarkeit von Kubernetes-Applikationen 
außerhalb des Clusters und existieren keine weiterge-
henden Anforderungen an API-Management oder IT-
Sicherheit, wird in vielen Fällen ein Ingress Controller 
ausreichen.

Viele IT-Systemlandschaften sind heute aber hetero-
gen aufgestellt und basieren auf unterschiedlichen, auch 
nicht containerbasierten Plattformen. Zudem verteilt 
sich die Infrastruktur. Der Weg geht von reinen On-
Premises-Lösungen hin zu hybriden und Multi-Cloud-
Architekturen. APIs existieren ebenfalls bereits, aber 
häufig ohne jegliche Visibilität und Management.

Um die Gefahr einzudämmen, dass sich die APIs zu 
einem unkontrolliert wachsenden und undurchsichtigen 
Dschungel entwickeln, sollten Architekten den Einsatz 
eines API Gateway in Erwägung ziehen. Und dieses API 
Gateway sollte die notwendige Flexibilität mitbringen, 
um den Anforderungen einer verteilten, heterogenen 
Landschaft gerecht zu werden.

API Gateways und Kubernetes
API Gateways sind heute bereits häufig Bestandteil vieler 
IT-Systemlandschaften. Viele Unternehmen verwenden 
heute noch API Gateways, die auf älteren Architekturen 
basieren, wie etwa das Axway oder Layer 7 API Gate-
way. Sie stellen uns vor typische Herausforderungen, 
wie wir sie von Legacy-Applikationen kennen. Es geht 
also um Themen wie Skalierbarkeit, dynamische Kon-
figuration, Automatisierbarkeit etc. Zudem sind ältere 
API Gateways meist ressourcenintensiv, was CPU- und 
Speichernutzung angeht. Daher stoßen sie in hybriden 
und Multicloud-Umgebungen häufig an Grenzen. Auch 
sind sie in der Regel nicht konform mit Cloud-nativen 
Prinzipien (wie den Twelve-Factor-App-Regeln [5]) und 
lassen sich in hybriden oder Multi-Cloud-Szenarien 
schlecht betreiben. Für den Betrieb in dynamischen Um-
gebungen wie Kubernetes sind diese also nicht geeignet.

Es kann klar gesagt werden: In Zeiten von Contai-
nern, Kubernetes und Multi-Cloud ist ein Umdenken 
nötig und auch zu beobachten. Cloud-native oder sogar 
-agnostische API Gateways – etwa von Kong, Gravitee.
io oder KrakenD – bieten hier Flexibilität und können 
sogar direkt in Kubernetes betrieben werden. So ein 
Gateway wird über ein Kubernetes Deployment be-
schrieben und läuft, wie in Abbildung 3 dargestellt, in 
Form von Pods im Cluster. Die Erreichbarkeit erfolgt 
über Ingress- oder HTTPRoute-Definitionen, während 
Routing- und Policy-Einstellungen über ein Administra-
tions-API gesteuert werden.

Also alles gut, oder? 
Nun ja, bis auf einige Einschränkungen … Aus operati-
ver Sicht ist der in Abbildung 3 dargestellte architekto-
nische Aufbau nicht optimal. Das Gateway ist zwar auf 
Cloud-Native-Prinzipien aufgebaut, allerdings bedeutet 
das nicht, dass es auch konform mit den Kubernetes-Me-
chanismen und Konzepten ist und diese optimal ausnutzt:

•	Betriebliche Komplexität: Die Konfiguration des API 
Gateway muss irgendwo gespeichert werden. Ent-
weder wird sie als Datei im Docker-Image hinterlegt, 
was aus Sicht der dynamischen Konfigurierbarkeit 
problematisch ist. Alternativ kann auch eine Daten-

Abb. 3: API Gateway mit agnostischer Architektur in Kubernetes

Capability Ingress Controller API Gateway

Load Balancing Ja Ja

Routing Ja Ja

SSL/TLS-Terminierung Ja Ja

Authentifizierung Nein Ja

Autorisierung Nein Ja

Rate Limiting Nein Ja

Caching Nein Ja

Request-/Response-
Validierung

Nein Ja

Observability Nein Ja

Tabelle 1: Gegenüberstellung der Capabilities von Ingress Controller und API Gateway



entwickler.de javamagazin  2 | 2025

ArchitekturKubernetes

89

bank im Kubernetes-Cluster oder extern bereitgestellt 
werden. Insgesamt erhöht sich hierdurch die betrieb-
liche Komplexität.

•	Skalierbarkeit: Die Herausforderungen im Bereich 
der Konfiguration wirken sich auch negativ auf die 
Skalierbarkeit aus. Vor allem, wenn eine Datenbank 
verwendet wird, da diese entsprechend mitskaliert 
werden muss.

•	Sicherheit: Der dargestellte Aufbau birgt Sicherheits-
risiken. Da das Administrations-API außerhalb des 
Clusters verfügbar ist, um das API Gateway konfigu-
rieren zu können, müssen sich Betriebsteams um eine 
Absicherung kümmern. Weiterhin muss sichergestellt 
werden, dass Kubernetes-Applikationen nicht am 
API Gateway vorbei clusterextern verfügbar gemacht 
werden. Das kann z. B. durch die Einführung eines 
Admission Controllers wie Kyverno [6] und die Defi-
nition entsprechender Regelwerke verhindert werden, 
erhöht aber ebenfalls die betriebliche Komplexität.

Kubernetes-native API Gateways als zukunftsfähige 
Lösung
Aber wie können wir die zuvor beschriebenen Herausfor-
derungen lösen? Die Antwort ist: durch die Verwendung 
Kubernetes-nativer API Gateways! Solche Gateways in-
tegrieren sich optimal in das Kubernetes-Ökosystem. Sie 
benötigen kein separates Administrations-API, da die 
Konfiguration nativ über Kubernetes erfolgt. Mit Hilfe 
von Custom Resource Definitions (CRDs) können Poli-
cies und Services direkt in Kubernetes beschrieben wer-
den. Der gesamte Lifecycle des API Gateways wird mit 
Kubernetes-Bordmitteln abgebildet – eine ideale Lösung 
für GitOps-Ansätze, was auch der Entwicklereffizienz 
zugutekommt, da das Kubernetes-Ökosystem nicht ver-
lassen werden muss.

Weiterhin vereinfacht ein Kubernetes-natives API 
Gateway auch die Handhabung im Betrieb, da Standard-
Kubernetes-Mechanismen genutzt werden. Werden 
Kubernetes-Operatoren verwendet, können betriebliche 
Abläufe nach der initialen Installation automatisiert und 
somit effektiv unterstützt werden.

Beispiele für Kubernetes-native API Gateways 
(Abb.  4) sind neben anderen Kong, Gravitee.io oder 
Apache APISIX. Was auffällt, ist: Softwarehersteller, die 
Cloud-native oder -agnostische API Gateways anbieten, 
bieten häufig auch Kubernetes-native Pendants an.

API Gateway in Kubernetes – sinnvoll oder nicht?
Abschließend stellt sich die Frage: Ist ein API Gateway 
für Kubernetes-Applikationen notwendig? Die Antwort 
lautet: „Es kommt darauf an.“ Die wahre Stärke eines 
API Gateway zeigt sich besonders dann, wenn das API-
Management strategisch angegangen wird und Sicher-
heit, Transparenz und Kontrolle gefragt sind.

Ein API Gateway kann Unternehmen helfen, die 
zunehmende Komplexität in heterogenen IT-System-
landschaften, die sich zunehmend in Richtung Cloud 
beziehungsweise Multi-Cloud bewegen, zu bewältigen. 

Abb. 4: Kubernetes-natives API Gateway

Gerade in einer Zeit, in der Microservices das bevor-
zugte Stilmittel sind, wird es wichtiger, Überblick über 
vorhandene APIs und deren Nutzungsverhalten zu ha-
ben, Sicherheitsrichtlinien konsistent durchzusetzen und 
Kommunikationsverläufe sichtbar zu machen. Kuber-
netes ist die elementare Plattform, um solche verteilten 
Applikationsarchitekturen effizient zu betreiben und 
weiterzuentwickeln. Durch den zunehmenden Einsatz 
von KI und die Integration von Large Language Models 
(LLMs) in Applikationen erhöht sich stetig die Anzahl 
der zu managenden APIs. Das bedeutet, auch die Not-
wendigkeit für ein konsistentes Management wächst 
weiter. 

Mein Plädoyer daher: Heute schon an morgen den-
ken: Ein API Gateway in Kubernetes könnte der erste 
Schritt in Richtung eines umfassenden API-Manage-
ments sein – und langfristig die Basis für eine stabile und 
zukunftsfähige IT-Infrastruktur!

Sven Bernhardt ist Chief Architect bei OPITZ CONSULTING mit 
Fokus auf Modernisierung und Integration bestehender IT-Sys-
teme. Insbesondere am Herzen liegen ihm API-Management 
und Microservices.

Links & Literatur

[1] https://microservices.io/patterns/apigateway.html

[2] https://kubernetes.io/docs/concepts/services-networking/ingress/

[3] https://gateway-api.sigs.k8s.io

[4] https://gateway-api.sigs.k8s.io/implementations/

[5] https://12factor.net/de/

[6] https://kyverno.io


